Sparse recovery on Euclidean Jordan algebras
نویسندگان
چکیده
منابع مشابه
Sparse Recovery on Euclidean Jordan Algebras
We consider the sparse recovery problem on Euclidean Jordan algebra (SREJA), which includes sparse signal recovery and low-rank symmetric matrix recovery as special cases. We introduce the restricted isometry property, null space property (NSP), and s-goodness for linear transformations in s-sparse element recovery on Euclidean Jordan algebra (SREJA), all of which provide sufficient conditions ...
متن کاملThe Fischer-Burmeister Complementarity Function on Euclidean Jordan Algebras∗
∗The work was partly supported by a Discovery Grant from NSERC, and the National Natural Science Foundation of China (10671010, 70640420143). 1 Lingchen Kong, Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044, P. R. China (e-mail: konglche...
متن کاملMore results on Schur complements in Euclidean Jordan algebras
In a recent article [8], Gowda and Sznajder studied the concept of Schur complement in Euclidean Jordan algebras and described Schur determinantal and Haynsworth inertia formulas. In this article, we establish some more results on the Schur complement. Specifically, we prove, in the setting of Euclidean Jordan algebras, an analogue of the Crabtree-Haynsworth quotient formula and show that any S...
متن کاملSome P-Properties for Nonlinear Transformations on Euclidean Jordan Algebras
A real square matrix is said to be a P-matrix if all its principal minors are positive. It is well known that this property is equivalent to: the nonsign-reversal property based on the componentwise product of vectors, the order P-property based on the minimum and maximum of vectors, uniqueness property in the standard linear complementarity problem, (Lipschitzian) homeomorphism property of the...
متن کاملNewton’s Algorithm in Euclidean Jordan Algebras, with Applications to Robotics∗
We consider a convex optimization problem on linearly constrained cones in Euclidean Jordan algebras. The problem is solved using a damped Newton algorithm. Quadratic convergence to the global minimum is shown using an explicit step-size selection. Moreover, we prove that the algorithm is a smooth discretization of a Newton flow with Lipschitz continuous derivative.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2015
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.09.018